New observational evidence for a positive cloud feedback that amplifies the Atlantic Multidecadal Oscillation

نویسندگان

  • Katinka Bellomo
  • Amy C. Clement
  • Lisa N. Murphy
  • Lorenzo M. Polvani
  • Mark A. Cane
چکیده

The Atlantic Multidecadal Oscillation (AMO) affects climate variability in the North Atlantic basin and adjacent continents with potential societal impacts. Previous studies based on model simulations and short-term satellite retrievals hypothesized an important role for cloud radiative forcing in modulating the persistence of the AMO in the tropics, but this mechanism remains to be tested with long-term observational records. Here we analyze data sets that span multiple decades and present new observational evidence for a positive feedback between total cloud amount, sea surface temperature (SST), and atmospheric circulation that can strengthen the persistence and amplitude of the tropical branch of the AMO. In addition, we estimate cloud amount feedback from observations and quantify its impact on SST with idealized modeling experiments. From these experiments we conclude that cloud feedbacks can account for 10% to 31% of the observed SST anomalies associated with the AMO over the tropics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation

Observational analysis suggests that the western tropical Pacific (WTP) sea surface temperature (SST) shows predominant variability over multidecadal time scales, which is unlikely to be explained by the Interdecadal Pacific Oscillation. Here we show that this variability is largely explained by the remote Atlantic multidecadal oscillation (AMO). A suite of Atlantic Pacemaker experiments succes...

متن کامل

Impact of the Atlantic Multidecadal Oscillation on North Pacific climate variability

[1] In this paper, we found that the Atlantic Multidecadal Oscillation (AMO) can contribute to the Pacific Decadal Oscillation (PDO), especially the component of the PDO that is linearly independent of El Niño and the Southern Oscillation (ENSO), i.e. the North Pacific Multidecadal Oscillation (NPMO), and the associated Pacific/North America (PNA) pattern. Using a hybrid version of the GFDL CM2...

متن کامل

On Multidecadal and Quasi-Decadal North Atlantic Variability

Observed sea surface temperatures (SSTs) in the North Atlantic from 1958 through 2000, as well as data from an ocean model simulation driven with the atmospheric variability observed during the same period, are examined using multichannel singular spectrum analysis. The two leading oscillatory modes are associated with a multidecadal and a quasi-decadal period. The former is connected to a basi...

متن کامل

The Influence of El Niño–Southern Oscillation and the Atlantic Multidecadal Oscillation on Caribbean Tropical Cyclone Activity

Caribbean basin tropical cyclone activity shows significant variability on interannual as well as multidecadal time scales. Comprehensive statistics for Caribbean hurricane activity are tabulated, and then large-scale climate features are examined for their impacts on this activity. The primary interannual driver of variability is found to be El Niño–Southern Oscillation, which alters levels of...

متن کامل

Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States.

More than half (52%) of the spatial and temporal variance in multidecadal drought frequency over the conterminous United States is attributable to the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). An additional 22% of the variance in drought frequency is related to a complex spatial pattern of positive and negative trends in drought occurrence possibly relat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016